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While the droplet-train/flow-reactor method is one of the most powerful experimental techniques to study
mass-accommodation kinetics at liquid-vapor interfaces, relatively little is understood about the gas-phase
diffusion resistance in the flow tube, an important ingredient to the overall uptake kinetics. In this paper, we
theoretically examined the gaseous resistance by numerically solving the coupled-diffusion equation and fluid
dynamics in the flow tube. The results indicate that the gaseous resistance for the train of droplets significantly
deviates from that for a single spherical droplet because of the interference among the droplets and the flow
effect. The dependences of the gaseous transport on varying droplet velocity and orifice frequency are examined
and quantitatively elucidated on the basis of the calculated data. This paper suggests that an accurate formula
for the gas-phase diffusion resistance is desirable, particularly for the quantitative evaluation of the mass-
accommodation coefficients of liquids having substantial vapor pressures.

1. Introduction

The interfacial mass transfer between gaseous and condensed
phases is of fundamental importance in heterogeneous atmo-
spheric chemistry and cloud microphysics.1-4 It has been widely
recognized that aerosol particles often play significant roles in
the budget and fate of trace gases such as halogens, sulfurs,
and organics in the atmosphere via the mass-transfer and
surface-bulk reactions, and hence the microscopic understand-
ing of interfacial mass exchange is strongly called for in
atmospheric chemistry. The interfacial mass transfer is also of
critical significance on the growth rate and composition of the
aerosol particles.

Heterogeneous kinetics has been experimentally studied by
various techniques,3,5 for example, the Knudsen-cell reactor,6-9

droplet-train/flow-reactor,10-17 coated-wall flow-tube,18-23 aero-
sol flow-tube,24-27 liquid-jet coaxial flow-reactor,28 and imping-
ing-flow methods.29 These experiments commonly measure the
change in the trace-species concentration due to the interfacial
mass transfer. The deposition rate of the trace species is defined
as the number of molecules to be taken up per unit time and
surface area. The experimental results are expressed by the
uptake coefficientγ, defined as the deposition rate normalized
by the ideal thermal collision rate (ngcj/4),

where, in the denominator,ng and cj are the concentration of
the trace species in the gas phase and the average thermal
velocity of the trace-gas molecules ()x8kBT/πM), respec-
tively.

From a microscopic viewpoint, the phenomenological uptake
coefficient γ involves following elemental kinetic processes:
gas-phase diffusion, mass accommodation, diffusion, and reac-
tion in or on aerosols.5,30 Therefore, the decomposition of the
overall kinetics into the above elemental steps is a critical issue
to gain a complete picture of the heterogeneous kinetics. Among
the above elemental kinetic steps, the mass-accommodation
process of the trace gas after impinging on the surface is truly
of an interfacial nature, governed by the molecular properties
of the trace gas and surface. This process is characterized by
the probability of mass accommodation, namely, the mass-
accommodation coefficient

which ranges from 0 to 1. Thus, derivingR from γ is a crucial
concern in the experimental analysis of heterogeneous kinetics.

Among the experimental methods, the droplet-train/flow-
reactor technique has been particularly utilized by the Aerodyne
and Boston College groups,10-15 and so far the most compre-
hensive data have been provided for the mass-accommodation
coefficients of a number of species and liquids. The apparatus
uses a highly controlled train of droplets passing through a low-
pressure flow reactor. The gaseous region of the flow reactor
contains the trace species to be taken up, the saturated vapor of
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γ )
deposition rate into the liquid

thermal collision rate (ngcj/4)
(1)

R )
amount of trace gas absorbed into the liquid

amount of trace gas impinging on the surface
(2)
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the droplets, and an inert carrier gas such as He or Ar, if
necessary. The liquid droplets are generated by a vibrating
orifice at a certain frequency and backing pressure. With changes
to the orifice frequency, the total surface area of the droplets is
well controlled and varied. The uptake amount of the trace gas
into the droplets is monitored through the decrease in gaseous
concentration, and the uptake coefficientγ is derived from the
concentration change with varying total surface area. The
droplet-train/flow-reactor technique has important advantages,
such as a constantly refreshed liquid surface, precisely controlled
surface area, and interaction time in millisecond order. This
technique is, therefore, applicable to a wide range of uptake
coefficients, including those with relatively large values.

However, the results of the mass-accommodation coefficients
appear to be incompatible with other experimental and theoreti-
cal results, as is often encountered in heterogeneous chemistry.
A microscopic understanding ofR is accordingly still far from
complete. For example, a serious discrepancy in the ethanol
uptake into water has been reported between the experimental
value of R11,12,17 and that calculated via molecular dynamics
simulations;31,32 R ≈ 0.04-0.1 at room temperature in the
former, whereasR ≈ 1 in the latter. An analogous discrepancy
has also been provided among the experimental studies in the
ammonia uptake into sulfuric acid solutions.13,33As an attempt
to elucidate the experimental mass-accommodation coefficients
and their temperature dependences, an interesting microscopic
model of mass accommodation has been proposed on the basis
of the theory of nucleation,34,35 but this model has not been
corroborated by a molecular dynamics simulation.31 Another
remarkable example of our incomplete understanding is the
mass-accommodation coefficientR of water into water, which
ranges from 0.006 to 1 among the experimental results reported
to date.36,37 The R of water has been drawing considerable
attention in the field of cloud microphysics because it is quite
relevant to the growth rate of aqueous aerosols,38,39 but it is
still an open and important question whether theR of water
into water is considered to be unity or not.14,36-38 Recently, Li
et al.14 employed droplet-train/flow-reactor experiments using
isotopically labeled water (H217O and D2O) and argued that the
mass-accommodation coefficient could be different from the
thermal-accommodation coefficient, probaby for the impinging
gas molecule to thermally equilibrate at the surface. They
suggested that the former can be smaller than 1, whereas the
latter is unity. Evidently, the time scales of the mass and thermal
accommodation and the mechanism of proton exchange in the
case of water accommodation should be further studied.

The main purpose of the present work is to clarify possible
ambiguities in the gas-phase diffusion of the droplet-train/flow-
reactor experiments because the gaseous resistance in the
experimental analysis involves some important assumptions that
might affect the experimentally derived mass-accommodation
coefficients. The experimental analysis for the derivation of the
mass-accommodation coefficients has been based on the resis-
tance model in the following equation. In this model, the overall
resistance of the uptake is decoupled into the resistances of
successive processes, that is, the gas-phase diffusion, mass
accommodation, and liquid-phase diffusion and reaction5,30

The notations of eq (3) follow those in ref 5, where 1/γ is the
overall resistance and inverse of the uptake coefficient and 1/Γg,
1/R, 1/Γsol, and 1/Γrxn denote the resistances of the gas-phase
diffusion, mass accommodation, and liquid-phase solubility and
reaction, respectively. Note that eq (3) does not include the

surface-specific reaction, which would modify the coupling
scheme and the equation.40 The successive decoupling in eq
(3) is shown to be fairly accurate and reliable,41 essentially
because the different resistances in series are attributed to
spatially different regions, whereas the parallel connection of
Γsol andΓrxn in the liquid phase gives some deviation from the
exact solution.5,42 These problems in the surface reaction and
liquid phase do not affect the discussion below that focuses on
the gas-phase diffusion resistance. We assume the resistance
model of eq (3) throughout the following discussion.

The gas-phase resistance 1/Γg for a droplet of diameterd is
usually represented by the Fuchs-Sutugin formula1,43,44or other
alternative formulas.1 Fuchs and Sutugin gave an analytical
formula for gas-phase transport into a spherical particle over a
wide range of Knudsen numbers,Kn ) 2l/d, the ratio of the
mean free path of the trace-gas moleculesl to the particle radius
d/2. AssumingR ) 1, the Fuchs-Sutugin uptake coefficient
ΓF-S, normalized by the surface area 4π(d/2)2 and the thermal
collision ratengcj/4, is given as

whereDg is the gas-phase diffusion coefficient of the trace gas
and λ denotes correction from the purely diffusive transport,

In eq (4), Meyer’s expression for the diffusion coefficient,Dg

) lcj/3, is employed so thatKn ) 6Dg/cjd. The gas-phase
resistance 1/Γg is thus represented as

The limiting formula of the right-hand side of eq (6) corresponds
to the continuum expression5

The first term of eq (7) is derived by solving the steady-state
diffusion equation in the spherical boundary condition, and the
second term stems from the kinetic correction.5,45The difference
between eqs (6) and (7) is not significant in the case of the
water droplets discussed below, due to the saturated water vapor
pressure reducing the mean free path and the Knudsen number
(Kn j 0.2 at T ) 0 °C). The present paper deals with the
continuum regime most often encountered in atmospheric
chemistry, while the intermediate or kinetic regime with higher
Kn values has recently been explored using sulfuric acid or
organic liquids in laboratory experiments.15

However, eq (6) or (7) involves the important assumption
that the concentration distribution is spherical around a single
static droplet, whereas in the droplet-train flow tube the fast-
moving train of droplets would break the spherical symmetry.
Therefore, it has not been obvious whether eq (6) can be
properly applied to the droplet-train/flow-reactor conditions.
Such effects were discussed by Widmann and Davis,46 but they
modeled the droplet train as a liquid rod, which should be the
other extreme situation, exaggerating the interference of the
droplets. In the actual experimental conditions, the gas-phase
diffusion resistance is minimized using low pressure (highDg)
and small droplets (smalld), but the gas-phase resistance is still
substantial for the water droplets near room temperature. The

1/γ ) 1/Γg + 1/R + 1/(Γsol + Γrxn) (3)

ΓF-S )
4π(d/2)Dgng

1 + λKn /[4π(d/2)2
ngcj
4 ] ) 4Kn

3
1

1 + λKn
(4)

λ ) (1.333+ 0.71Kn-1)/(1 + Kn-1) (5)

1
Γg

) 1
ΓF-S

- 1 ) 0.75+ 0.283Kn
Kn(1 + Kn)

f
0.75
Kn

- 0.467

(Kn f 0) (6)

1/Γg ) cjd/8Dg - 1/2 (7)
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purpose of the present paper is to quantitatively evaluate the
gas-phase resistance in the droplet-train/flow-reactor apparatus.
We numerically solved the coupled-diffusion equation and the
fluid dynamics for flow conditions that mimic the droplet-train/
flow-reactor apparatus. As we will see, the deviation of the trace-
gas-phase concentration from a spherical distribution is, in fact,
observed, which influences the gas-phase resistance for the trace-
gas uptake. We recently published a first report of the numerical
analysis in a short letter,47 and the present paper provides a more
comprehensive presentation of the calculations and expands the
discussion and analysis by systematically changing the geometry
and conditions.

The remainder of this paper is as follows. The next section
describes the method and conditions of the calculations, and
section 3 presents the results and discussion. Brief concluding
remarks follow in section 4.

2. Method

The calculations were performed in the boundary conditions
that correspond to a typical droplet-train/flow-reactor apparatus.
The train of water droplets is assumed to be generated from an
orifice of diameterdo ) 60 µm at velocityVd ) 27 m/s and
frequencyfo ) 100 kHz.10 These parameters, satisfying the
Rayleigh formula of natural breakup10

are specified as a standard configuration of the droplet train in
this work, though the effects of the varying parameters on the
uptake kinetics will also be discussed later. The distance between
adjacent droplet centersdc is, consequently,dc ) Vd/fo ) 270
µm. The volumetric flow rate of the liquid waterF is represented
twofold,

which derives the droplet diameterd in the natural breakup
condition as

Equation (10), in connection with the orifice diameterdo ) 60
µm, leads to the droplet diameterd ) 113 µm. The standard
geometry of the flow tube is depicted in Figure 1, where 50
droplets are aligned on the center of a spherical cylinder with
a diameter of 15 mm and a length of 20 mm. The train of
droplets moves left at a relative speedVd to the cylinder wall.
The gaseous volumetric flow rate was set at 200 cm3/s in the
same direction, which means the gas velocity isVg ) 200 cm3/
s/[π(15 mm/2)2] ) 1.13 m/s. For practical convenience of
calculations, the droplets were fixed while the wall and the

gaseous flow moved to the right byVd andVd - Vg, respectively
(see Figure 2a).

We note that the diameter of the flow tube in Figure 1
corresponds to the actual experiments, while the length is
substantially shorter because of computational limitations. To
eliminate possible artificial influences of the finite tube length
on the velocity field, the stationary velocity field in a long flow
tube without the droplets was calculated prior to the droplet
calculations in a cylindrical tube with the same diameter (15
mm) and sufficient length (320 mm). The stationary velocity
field thus developed near the outlet side of the long tube, which
has a parabolic velocity distribution withVd at the wall surface
and with the average ofVd - Vg, was utilized as the boundary
condition of the droplet-train flow tube at the gas-inlet side (left
side in Figure 1). The boundary condition at the outlet side (right
side in Figure 1) was a constant pressure identical to that of the
bulk. We applied a nonslip boundary condition to the gaseous
flow on the surface boundary of the wall and the droplets
throughout. The temperature was assumed to be uniform in the
flow tube because the trace amount of the uptake gas should
produce a negligible heat of condensation.

The gas in the flow tube consists of the trace species for
uptake, water vapor, and inert carrier gas, if necessary. The trace
gas was modeled as methanol at an initial concentrationng )
1013 molecules/cm3 at the inlet. The trace-gas concentration is
low enough to safely neglect its influence on the flow field,
and we confirmed the linearity of the uptake in trace-gas
concentration by examining another concentration, 5× 1013

molecules/cm3. The gas in the flow tube should be saturated
with water vapor, and three cases of the vapor pressure were
examined depending on the temperature: 12.8, 4.6, and 1.7 Torr
at T ) +15, 0, and-13 °C, respectively.5,48 The carrier gas
was either He or Ar to maintain the total pressure inside the
flow tube in the range of 6-50 Torr. The Reynolds numbers
of the above situations are below 10.0, which allows us to treat
the situation as having laminar flow.

The intrinsic deposition rate constant of the trace species onto
the droplet surface,kint, is defined as the deposition rate

Figure 1. Cross section of the cylindrical flow tube with the standard
geometry with units of millimeters. The wall and the gaseous flow
move to the right relative to the droplets.

Figure 2. (a) Velocity field of the gas flow relative to the droplets
and (b) trace-gas concentration in the flow tube with the standard
geometry depicted in Figure 1 at steady state with the temperatureT
) 0 °C, the total pressurePtotal ) 25 Torr, and He buffer. Half the
cross section along the tube axis is displayed, where the top line denotes
the cylindrical wall surface and the bottom line the central axis of the
flow tube. The magnified picture in panel a shows the streamlines in
the vicinity of the 46-49th droplets (from the left). The inset in the
upper right corner of panel b shows the concentration in the vicinity
of the 46-49th droplets.

fo ) Vd/4.5do (8)

F ) π(do/2)2Vd ) 4/3π(d/2)3fo (9)

d ) (3do
2Vd/2fo)

1/3 ) (3 × 4.5/2)1/3do≈ 1.89do (10)
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normalized with the local gas-phase concentration at the droplet
surface. We modeled the rate constant in two ways, perfect
uptake and a finite ratekint ) cj/2. The former assumption
indicates that the uptake resistance is determined solely by the
gas-phase resistance, 1/γ ) 1/Γg. In the calculations, this
assumption of perfect uptake was implemented with sufficiently
large values askint ) 1030-1035cm/s, which imposes vanishing
concentration of the trace species at the droplet surface,
consistent with the absorbing boundary condition of the
conventional Smoluchowski theory.49 We confirmed that the
concentration field and the deposition rate are invariant with
kint in the above range. The latter assumption ofkint ) cj/2, on
the other hand, effectively incorporates the finite kinetic collision
rate at the interface in the Collins-Kimball boundary condi-
tion.50 The intrinsic rate constantcj/2, twice as large as the ideal
thermal collision-rate constantcj/4, is consistent with the unit
mass-accommodation coefficientR ) 1, considering that the
surface uptake distorts the isotropic Maxwell-Boltzmann
molecular velocity distribution near the interface.51 (Note that
the same mechanism also accounts for the term1/2 in eq (7).)45

Although the two assumptions make little difference in the flow
or concentration field, special care has to be taken of the
interfacial resistance when examining the possible uncertainty
in the mass-accommodation coefficient derived in the flow
conditions. For this purpose, the latter assumption of the finite
kint should be employed.

Besides the standard geometry depicted in Figure 1, we also
examined other geometries for comparison to determine the
effects of varying parameters, particularly the droplet velocity
and the orifice frequency. To cover the experimental range of
the droplet velocity, two droplet velocities of 15 and 44 m/s
were employed in addition to the standard velocity,Vd ) 27
m/s. Regarding the orifice frequency, two other frequencies,
fo/4 and fo/16, were also employed in addition to the natural
breakup frequencyfo, with a fixed liquid volumetric flow rate
and droplet velocity. Although the Rayleigh natural breakup
condition of eq (8) is no longer satisfied for other frequencies,
these subharmonic frequencies of the natural breakup are
efficient enough to generate the droplets and are actually utilized
in the experiments.10,15 For these alternative frequencies, the
droplet diameterd and the distancedc simultaneously change
asd ∝ fo-1/3 anddc ∝ fo-1, which in turn change the total droplet
surface area∝ fo1/3. In the calculations with the lower frequen-
cies, the tube length was enlarged to 400 and 900 mm forfo/4
and fo/16, respectively, as the droplet distancedc increases, so
that the former tube segment contains 40 droplets and the latter
segment contains 20 droplets.

The viscosity of the fluid and the diffusion coefficients of
the constituent molecules at each pressure and temperature were
evaluated via the Chapman-Enskog theory.52,53 The collision
integrals were calculated with the Stockmeyer model for the
polar molecules and the Lennard-Jones model for the nonpolar
molecules, where the ingredient parameters were taken from
the literature.54 The calculated diffusion coefficients for varying
composition, pressure, and temperature are given in Table 1.

The coupled-fluid and -diffusion equations were numerically
solved using the FLUENT package55 in the axisymmetric two-
dimensional space. In the finite-volume approach, special care
was taken to describe the boundary region near the gas-droplet
interface, the critical gas-phase region for the uptake. The
boundary region was divided radially with six concentric circles,
which were then divided evenly at a constant angle of 180°/10
) 18° to define the volume elements. The closest circle
corresponds to the droplet surface, and the radial spacings

between adjacent circles were 11.0, 12.1, 13.3, 14.6, and 16.1
µm, which gradually increase as the circles become farther away
from the droplet. The rest of the gas-phase space was divided
into triangular volume elements, and the total number of the
volume elements was 64 413 for the flow tube in Figure 1. To
check the accuracy of the above finite mesh division, we used
another finer mesh division, consisting of 110 626 quadrilateral
elements, for comparison and confirmed that the calculated
deposition rates for the two schemes of mesh divisions agreed
within 0.5%. For the discretization method, the first-order
upwind scheme55 was employed, where the concentration and
its gradient at the droplet surface are represented with the cell-
center values at the volume elements in contact with the surface.
More exactly, however, the deposition rate should be derived
from the values at the droplet surface, which correspond to the
edges of the cells in the discretization method. Therefore, we
examined the accuracy of the calculated deposition rate by
comparing this method with the second-order upwind scheme,
which extrapolates the cell-center values to those at the edges
of the cell, and found that the two results agreed within 4%.

3. Results and Discussion

3.1. Gaseous Velocity and Concentration Fields.Figure 2a
displays the velocity field of the gas flow in the flow tube at a
steady-state condition. Because this figure adopts a relative
velocity to the fixed droplets as mentioned in section 2, the gas
velocity at the wall surface (top line of the panel) is fixed atVd

) 27 m/s, and the average gas velocity at the inlet side (left
side) isVd - Vg ) 25.87 m/s along the axis. Panel a shows a
nearly uniform gaseous velocity distribution, parallel to the axis,
except for in the vicinity of the train of droplets (bottom line),
where significant perturbation on the gaseous flow by the
droplets is apparently observed. Note that the gaseous velocity
between adjacent droplets on the axis almost vanishes at steady
state, which implies that the gas flow exerts little local shear
friction on the droplet movement. This is consistent with the
experimental evidence that the train of droplets suffers from
little deceleration at steady state.15 (More rigorously, a slight
change in the droplet speed is actually observed.12 The possible
effects associated with the droplet deceleration are discussed
in appendix A.)

The flow field in the perturbed region is further observed in
the magnified picture of Figure 2a, which displays the stream-
lines in the vicinity of the droplets. The streamlines are generally
parallel to the axis even in the perturbed region, while the
corrugated lines are seen in the vicinity of the droplet train.

TABLE 1: Calculated Diffusion Coefficients, Dg, for the
Trace Gas Methanol with Varying Temperature and Gas
Compositiona

T (°C) Ptotal (Torr) Pbuffer (Torr) Dg (m2/s)

(a) -13 6.0 4.3 (He) 2.88× 10-3

25.0 23.3 (He) 1.13× 10-3

50.0 48.3 (He) 6.31× 10-4

25.0 23.3 (Ar) 3.48× 10-4

(b) 0 6.0 1.4 (He) 1.68× 10-3

25.0 20.4 (He) 9.21× 10-4

50.0 45.4 (He) 5.78× 10-4

25.0 20.4 (Ar) 3.75× 10-4

(c) +15 12.8 0.0 (-) 7.18× 10-4

25.0 12.2 (He) 5.95× 10-4

50.0 37.2 (He) 4.41× 10-4

25.0 12.2 (Ar) 3.94× 10-4

a Note that the saturated water vapor pressures are (a) 1.7, (b) 4.6,
and (c) 12.8 Torr. The concentration of the trace gas methanol is fixed
at 1013 molecules/cm3.
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The parallel streamlines imply that the mass transport along
the radial direction is mostly attributed to diffusion. The slight
corrugation is induced by the droplet-train motion. After a
droplet sweeps out a volume of gas, the droplet’s trailing wake
partially draws in gas, but the gas stream does not fully replenish
the trace gas near the center line of the droplet stream before
the next droplet arrives. The figure manifests fluid dynamical
coupling among the droplets, significantly affecting the velocity
field inside the flow tube. One can expect that it should also
affect the trace-gas concentration field and the mechanism of
gaseous transport.

The spatial distribution of the trace-gas concentration is shown
in Figure 2b. The concentration field in the whole flow tube is
characterized by a remarkable depletion in the trace species near
the axis, with an enhanced gradient along the radial direction.
This is because the axial transport is relatively fast because of
the velocity field, whereas the radial transport is mostly
diffusional. Consequently, the concentration field assumes nearly
cylindrical symmetry as a whole. At closer dimensions, however,
the magnified picture in Figure 2b shows a roughly spherical
concentration field around each droplet within the distance
nearly equal to the droplet radius, though the concentration field
is somewhat distorted by the droplet translational motion. Figure
3 displays the trace-gas concentration on the flow-tube axis.
Because each droplet is surrounded by the depleted region in
the trace species and the droplets are fairly closely spaced, the
tail distributions of the neighboring droplets overlap each other.
Consequently, the maximum concentration in the middle of the
droplets is substantially reduced below the bulk value,ng )
1013 molecules/cm3 (upper bound of Figure 3), due to the
interference among the droplets.

Figure 3 also shows the pressure dependence on the concen-
tration profile. Although the concentration profile is not sensitive
to the varying total pressure, the maximum concentration in the
middle of the droplets slightly increases with the total pressure.
It is qualitatively understood from the Rantz-Marshall formula56

(compare with section 3.4) that the surface boundary layer
around each droplet becomes thinner with increasing pressure,
thereby reducing the overlap of the tails.

3.2. Deposition Rates.In the preceding subsection, we
observed that the velocity and the trace-species concentration
distribution of the gas in the flow tube evidence considerable
differences from the ideal situation where a single, independent
droplet is located in static gaseous media. This subsection
discusses how these features in the gaseous concentration fields
affect the deposition rate of the trace gas into the droplets. The
boundary condition of perfect uptake is adopted at the droplet
surface in section 3.2 to focus on the gaseous resistance.

First, we discuss the spatial dependence of the deposition rate
in the flow tube. Figure 4a exhibits the deposition rates of the
50 droplets that are not exactly identical with respect to their
location in the flow tube. Each data point in Figure 4a represents
the averaged deposition rate over a whole droplet sphere,Rh(z0).
The spherical average was taken for each droplet as

wherez0 is the axial center-of-mass coordinate of the droplet.
Note that the axial coordinatez uniquely determines the
deposition rateR(z) at the droplet surface because of the
cylindrical symmetry. Figure 4a shows a nearly constant rate
except for a few upstream droplets and the last downstream
one. Exceptional rates could be observed in the droplets of both
ends, where lack of the translational symmetry is most
pronounced. The deviation is more obvious in the upstream
droplets because the cylindrical concentration field has not fully
grown upstream as shown in Figure 2b. These exceptional values
should be disregarded to discuss the representative rate in the
flow tube. The deposition rate is almost constant in the middle,
whereas careful observation reveals a slight decrease in the rate
along the flow, implying that the convergence is not completely
reached within the calculated flow-tube length. We took the
representative deposition rate as that from the downstream
droplets except for the last few, but this value should be regarded
as an upper limit of the true deposition rate (see appendix B).

Close observation of the downstream droplets is provided in
Figure 4b, a magnified picture of the deposition rate as a
function of the axial position, where nonzero values appear only
in the region occupied by the droplets. Although this figure
shows a slightly larger rate at the droplet side than that at the
head or tail, the difference is not very significant, implying a
nearly uniform deposition rate around the droplet surface. We
will deal with the spherically averaged deposition rate of the
downstream droplets in the following discussion.

The deposition rates with varying total pressurePtotal,
temperatureT, and buffer gas are summarized in Figure 5. The

Figure 3. Trace-gas concentration on the axis of the flow tube at 0
°C. The dashed line, solid line, and dotted line refer to the total pressures
Ptotal of 6, 25, and 50 Torr, respectively. The origin of the abscissa
corresponds to the left end of the flow tube in Figure 1. Note that the
regions having no finite concentration correspond to the droplets.

Figure 4. Spatial dependence of the trace-gas deposition rate into the
droplets at the same conditions as Figure 2. Each point in panel a
denotes the deposition rate into each droplet, and panel b displays the
deposition rate as a function of the axial position.

Rh(z0) ) 1
d∫z0-d/2

z0+d/2
R(z) dz (11)
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data points due to the varying parameters noted above are well
characterized by a single parameter, the gas-phase diffusion
coefficient of the trace speciesDg. This is reasonable, provided
that the fluid dynamical fields influencing the deposition rate
change little for the range of parameters studied, which appears
to be consistent with our observation that the velocity and
concentration fields of the gas are insensitive to the range of
the temperatures and pressures examined.

Another remarkable feature in Figure 5 is the systematic
upward deviation of the computed data points from the solid
line due to

which denotes the ideal deposition rate derived from the
Smoluchowski theory. This equation is equivalent to eq (7)
except for the kinetic correction term-1/2, which is not included
in eq (12) on the basis of the perfectly absorbing boundary
condition. The systematic upward deviation indicates an aug-
mented resistance of the gas-phase transport. This is attributed
to the interference among the droplets, as discussed in section
3.1. Figure 2b demonstrated that the train of droplets tends to
develop a cylindrical concentration field, involving larger con-
centration gradients in the radial direction than in the axial direc-
tion. Subsequently, the diffusive transport is effectively restricted
to a two-dimensional space except in the axial direction. The
restricted transport results in the augmented resistance, compared
to the free, three-dimensional diffusion represented by eq (12).

Figure 5 shows a linear regression line determined by the
least-squares fitting of the calculated data. The dotted line has
an apparent nonzero intersection at they axis, and its slope is
larger than that of the solid line, eq (12). Implications of these
features will be discussed in section 3.3. While the optimized
linear line roughly reproduces the calculated deposition rates,
close observation reveals a slight convex feature of the
calculated data toward the origin. This implies that a better
expression of the gas-phase resistance should be provided by a
nonlinear formula with the convex feature and extrapolation to
the origin. We plan to provide an accurate and practical formula
for the gas-phase resistance as a function of the droplet geometry
and conditions. Possible uncertainties in the calculated deposi-
tion rates are discussed in detail in appendix B.

3.3. Uptake and Mass-Accommodation Coefficients.This
subsection analyzes uptake and mass-accommodation coef-
ficients measured with the droplet-train flow reactor. The main
goal here is to improve the analysis for experimental mass-

accommodation coefficients using a more accurate and quantita-
tive description of the gaseous resistance. Because the present
discussion aims at evaluating the interfacial resistance, we adopt
the finite intrinsic deposition ratekint ) cj/2 for the boundary
condition at the droplet surface in this subsection. This ef-
fectively accounts for the unit intrinsic mass-accommodation
coefficient at the droplet surface,R ) 1, as discussed in section
2. The diffusion equation and fluid dynamics were simulated
atT ) 0 °C with varying pressure, and the calculated deposition
rates were normalized byngcj/4 to derive the uptake coefficients
γ.

The uptake coefficientsγ were expressed analytically by the
resistance model, eq (3), and the Fuchs-Sutugin formula, the
left-hand side of eq (1),

This equation does not account for the resistance in the liquid
phase,Γsol or Γrxn in eq (3), because the present calculations
include only the gaseous and interfacial resistances. Though eq
(13) employs the full Fuchs-Sutugin formula of eq (1), using
the limiting formula (right-hand side) of eq (1) or the continuum
representation of eq (7) makes little difference in the following
discussion, which justifies the diffusive treatment of the gaseous
resistance.

The calculated uptake coefficientsγ were fitted by eq (13)
via the optimization of two parameters,d (or Kn) andR, and
the results are plotted in Figure 6. Note that the two parameters,
the effective droplet diameterdeff and the effective mass-
accommodation coefficientReff, approximately correspond to
the slope and the intersection of the ordinate, respectively, in
Figure 6. The solid line of Figure 6 is the optimized result by
the least-squares fitting;deff ) 137 µm, andReff ) 0.35. The
effective droplet diameter optimized to the gaseous resistance,
deff, is considerably larger than the real diameterd ) 113 µm
by 20%. The notion of the effective diameter in the droplet-
train flow tube has been proposed by Worsnop et al.,15 and they
assumed the effective diameter to be twice the orifice diameter,
that is, 2do ) 120 µm in this case, also somewhat larger than
the real diameter. The present calculation qualitatively supports
this experimental assumption, while the optimized diameter,deff

) 137µm, is a little larger than twice the orifice diameter, 2do.
Next, we discuss the uncertainties inherent in the optimized

parameters derived above. The uncertainties in the calculated
deposition rates are extensively discussed in appendix B, and
the results are shown in Figure 6 by the error bars of the

Figure 5. Relation between the inverse diffusion coefficient 1/Dg and
inverse deposition rate 1/R of the model for methanol uptake with
varying total pressurePtotal, temperatureT, and buffer gas. The square,
circle, and triangle points indicateT ) -13, 0, and +15 °C,
respectively; the solid and open symbols denote He and Ar buffer gases.
The solid line refers to the ideal deposition rate 1/Rideal of eq (12), and
the dotted line is a least-squares-fitted linear regression line.

Figure 6. Relation between the inverse diffusion coefficient 1/Dg and
inverse uptake coefficient 1/γ of methanol atT ) 0 °C. The solid and
open circles denote respectively He and Ar buffer gases with varying
pressure. The solid line is the analytical expression for eq (13) with
the optimizeddeff ) 137µm andReff ) 0.35 and the dashed line with
the optimizeddeff ) 159 µm andReff ) 1 fixed. The two dotted lines
show the range defined bydeff ) 114-126 µm andReff ) 1.
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calculated data points of 1/γ. These uncertainties in 1/γ should
affect the uniqueness of the optimized parameters ofReff and
deff. Figure 7 shows the effective mass-accommodation coef-
ficient as a function ofdeff, determined by the least-squares
fitting at each fixed value ofdeff. The root-mean-square deviation
〈|∆(1/γ)|2〉 in the least-squares fitting is also shown in panel b.
Considering the uncertainties in 1/γ, as given in Figure 6, the
effective mass-accommodation coefficient can be defined in the
range ofdeff ) 113-163 µm, and possible values ofReff are
shown with the dashed bars in Figure 7a. Figure 7 indicates
that the value of the effective diameter originally proposed,deff

) (2.0( 0.1)do ) 114-126µm, is acceptable within the error
range, while the fitting accuracy is not as good as that by the
best fit (deff ) 137 µm). However, the original value ofdeff )
114-126 µm should yieldReff ) 0.22-0.34, andReff ) 1 in
combination withdeff ) 114-126 µm does not reproduce the
calculated uptake coefficient, as shown by the dotted lines in
Figure 6.

The effective mass-accommodation coefficientReff is a
controversial notion because it appears to be inconsistent with
R ) 1, the intrinsic mass-accommodation coefficient assumed
for the boundary condition of the calculation discussed in this
subsection. Therefore,Reff should be regarded as a provisional
mass-accommodation coefficient obtained from the conventional
analysis based on the Fuchs-Sutugin formula. To examine
further the effective mass-accommodation coefficient, we fit eq
(13) with Reff ) 1 fixed, and the result is displayed in Figure 6
as the dashed line. When the two fitted lines are compared, it
is found that the dashed line is not acceptable, because the
dashed line does not reproduce all the calculated data points
within the error bars. The dashed line corresponds to an effective
droplet diameter of 159µm, substantially larger than the real
diameter of 113µm or the optimized effective diameter of 137
µm. The above discussion manifests the necessity of a more
accurate and quantitative evaluation of the gaseous resistance
than that of the Fuchs-Sutugin formula for the droplet-train
flow reactor.

We expand on the above outcome with three important
comments. First, the above discussion is entirely based on a
continuum flow description of gaseous transport, whereas the
original purpose of the Fuchs-Sutugin formula was to describe
gaseous transport over a wide range of Knudsen numbers. The
problem illustrated above could be experimentally removed if
a sufficiently low flow-reactor pressure were utilized because
the gaseous resistance becomes asymptotically negligible with

increasing Knudsen number. Such conditions have been ex-
plored using sulfuric acid or organic liquids having low vapor
pressures.15 Second, measuring the mass-accommodation coef-
ficients in the continuum regime is increasingly difficult asR
becomes larger, close to unity.57 The uncertainty of the analysis
is more pronounced for larger values ofR, and the above
condition ofR ) 1 is an extreme case, where the uncertainty is
most pronounced. However, sometimes one wants to measure
a relatively largeR when the gaseous resistance is necessarily
substantial, for example, because of water vapor on liquid water,
and only in such cases will the accurate evaluation of the
gaseous resistance have significant consequences. Third, an
interesting problem remains in the uptake associated with the
H-D isotope exchange.12,14 The uptake of the deuterated
species, CD3COOD or D2O, is reported to be faster than that
of the normal counterpart. The mechanism of the enhanced
uptake is not elucidated by the present analysis, and further work
is needed.

3.4. Effects of Droplet Velocity.The last two subsections,
sections 3.4 and 3.5, deal with the deposition rate with varying
droplet velocity and orifice frequency, respectively. The actual
droplet-train/flow-reactor experiments often utilize these varying
conditions, which should significantly affect the gaseous fields
in the flow tube. Therefore, it is meaningful to theoretically
examine their influences on the deposition rate. The discussion
in the last two subsections is based on the absorbing boundary
condition at the droplet surface to focus on the gas-phase
resistance, though a difference in the boundary condition does
not affect the following discussion.58

Droplet movement amplifies the interference among the drop-
lets, causing the break in spherical symmetry around a droplet.
That is, while we have emphasized the interference among the
droplets in the flow tube, the interference is actually coupled
to the flow field induced mainly by the droplet movement. This
subsection examines the flow-field effect in connection with
the interference effect by varying the droplets’ velocities.

Figure 8 shows the 1/Dg-1/R plots with varying droplet
velocity Vd in the experimental range of 15-44 m/s.10 The
calculated deposition rates (solid symbols) yield a slight
dependence on the droplet velocity in this range. The results
are qualitatively consistent with the experimental finding that
theVd dependence on the uptake is not significant,10 but Figure
8 suggests that the dependence should be taken into account in
the quantitative analysis of the gaseous resistance.

The next issue is to provide a quantitative model to elucidate
the Vd dependence on the deposition rate. A simple and useful
model that incorporates the flow effect is provided by the
Rantz-Marshall formula,56 which represents the deposition rate
RR-M using the Sherwood number,Sh, as follows:

where V ) Vd - Vg, the droplet velocity relative to the
background gaseous flow.F andµ denote the mass density and
viscosity of the gas, respectively. Note that eqs (14) and (15)
coincide with eq (12) atV ) 0, which indicates that the Rantz-
Marshall formula is a natural extension of the Smoluchowski
diffusion-theory formulation. The flow effect is expressed in
the previous equations through the Sherwood number,Sh,
deviating from 2. The Sherwood number refers to the inverse
thickness of the surface boundary layer relative to the droplet
diameter. Equations (14) and (15) indicate that the faster flow
velocity V leads to the largerShand, hence, a larger deposition

Figure 7. (a) Optimized mass-accommodation coefficientReff as a
function of the effective diameterdeff, derived from Figure 6. The
possible range ofReff is shown with the dashed bars. (b) Root-mean-
square deviation for the least-squares fitting.

1/RR-M ) d/ShDgng (14)

Sh) 2 + 0.6(FVd/µ)1/2(µ/FDg)
1/3 (15)

Mass-Accommodation Processes J. Phys. Chem. A, Vol. 107, No. 11, 20031755



rateRR-M, implying that the thinner boundary layer facilitates
gaseous deposition onto the droplet surface.

Figure 8 also displays the inverse Rantz-Marshall deposition
rate 1/RR-M (open symbols) with varying diffusion coefficient
and droplet velocity. The Rantz-Marshall formula provides the
inverse deposition rate 1/RR-M considerably below the inverse
Smoluchowski diffusive rate 1/Rideal, indicating that the flow
effect generally facilitates the deposition. Equations (14) and
(15) quantitatively reproduce the velocity dependence of the
deposition rate fairly well, with a scaling factorRR-M/R≈ 2.3-
2.4 nearly invariant over the range of the diffusion coefficients
and droplet velocities we considered.

The finite scaling factorRR-M/R deviating from unity is
understood as follows. Even though the Rantz-Marshall
formula accounts for the diffusive transport coupled to the flow
field, it describes the deposition rate onto asinglesphere under
a uniform flow, thereby not involving the interference effect of
the droplet train. Suppose the deviation of 1/R from the ideal
diffusion theory, 1/Rideal of eq (12), is attributed to the following
two factors, that is, the flow effect and the interference effect,
and only the former could be incorporated by the Rantz-
Marshall formula. Therefore, comparison between the calculated
deposition rate,R, and the Rantz-Marshall rate,RR-M, allows
us to extract the pure interference effect after correcting for the
flow effect. The nearly constant scaling factorRR-M/R implies
that the above correction works fairly well to define the pure
interference effect.

The present calculations suggest an alternative model of the
gaseous resistance on the basis of the Rantz-Marshall formula.
The gas-phase transport in a certain condition in the flow tube
is represented by the Rantz-Marshall formula eqs (14) and (15)
with the scaling factorRR-M/R≈ 2.3-2.4. While this model is
derived rather empirically to reproduce the calculated gas-phase

deposition rate, it takes into account both the flow effect and
the interference among the droplets explicitly. Note that the
scaling factor thus derived,RR-M/R ≈ 2.3-2.4, is applicable
to the droplet geometry depicted in Figure 1 and that the ratio
RR-M/Rshould asymptotically approach unity as the interference
loses its influence with an increasing interval between droplets.
We also note that this model is valid only in the continuum
regime because both the present calculation and the Rantz-
Marshall formula eqs (14) and (15) deal with the continuum
regime.

3.5. Effects of Orifice Frequency.In the actual experimental
conditions, as described in section 2, the liquid surface area in
the flow tube is controlled by changing the orifice frequency
with a fixed volumetric flow rate and droplet velocity. The total
surface area changes with the orifice frequencyfo because both
the droplet diameterd and the center-of-mass distancedc

simultaneously vary asd ∝ fo-1/3 and dc ∝ fo-1. Usually, the
orifice frequency is considered to affect the amount of uptake
by changing the total surface area, with an implicit assumption
that the deposition rate, normalized by the surface area, is
constant. However, changing the droplet diameter and distance
could influence the gaseous fields in the flow tube in addition
to the total surface area, which might affect the deposition rate.
In this subsection, we examine the influence of the orifice
frequency on the deposition rate.

Figure 9 shows the calculated deposition rates at the frequen-
cies fo, fo/4, and fo/16. The orifice frequency, the droplet
diameter, and the droplet center-of-mass distance in the three
cases are summarized below.

The first set of conditions corresponds to the Rayleigh natural
breakup condition, eq (8). In the three cases, the results plotted
in Figure 9 reveal that the deposition rates are surprisingly
insensitive to the orifice frequency. This fact has been found
experimentally by Worsnop et al.,15 who demonstrated that the
gaseous resistance depends on the orifice diameter but not on
the droplet diameter. Our calculation supports this experimental
finding and also corroborates the above-mentioned assumption
of the experimental analysis15 that a varying orifice frequency
changes the total surface area but not the deposition rate.

Deducing the mechanism that produces invariant deposition
rates as a function of the orifice frequency is an interesting

Figure 8. (a) Relation between the inverse diffusion coefficient 1/Dg

and inverse deposition rate 1/Rof the model with methanol as the trace
gas and varying total pressurePtotal and droplet velocityVd at T ) 0
°C. The diamond, square, and triangle points denoteVd ) 15, 27, and
44 m/s, respectively. The solid symbols indicate the calculated values
and the open ones the Rantz-Marshall values 1/RR-M of eqs (14) and
(15). The solid line refers to the Smoluchowski deposition rate 1/Rideal

of eq (12), and the dotted lines connect the symbols to guide the eye.
Panel b shows the ratioRR-M/R.

Figure 9. Relation between the inverse diffusion coefficient 1/Dg and
inverse deposition rate 1/R of the model with methanol as the trace
gas and varying total pressurePtotal and orifice frequencyfo at T ) 0
°C. The circle, square, and triangle points denotefo, fo/4, and fo/16,
respectively. The solid, dashed, and dotted lines refer to the Smolu-
chowski deposition rate 1/Rideal of eq (12) at fo, fo/4, and fo/16,
respectively.

frequency (kHz) diameter (µm) distance (µm)

fo 100 113 270
fo/4 25 180 1080
fo/16 6.25 285 4320
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problem. As a clue to the mechanism, we compare the calculated
rates to the ideal Smoluchowski rates from eq (12), depicted
also in Figure 9 by the three lines. Note that the Smoluchowski
diffusive rate of eq (12) varies with the frequency through the
variation in droplet diameter,d. While the calculated rates are
nearly invariant to the orifice frequency, the ideal diffusive
resistances become larger with decreasing frequency. Conse-
quently, Figure 9 indicates that the calculated rates arefaster
than the ideal diffusive rates at lower frequencies. This
acceleration is attributed to the flow effect that facilitates the
deposition, as discussed in detail in the preceding subsection.
As the orifice frequency decreases, the distance between adjacent
droplets grows more rapidly (∝fo-1) compared to the droplet
diameter (∝fo-1/3). Therefore, the interference among droplets,
which suppresses the deposition rate, becomes increasingly less
significant at lower frequencies.

The invariant deposition rates could be caused by two
opposing factors, that is, the droplet diameter,d, and the droplet
spacing,dc. As the orifice frequency decreases, the droplet
diameter grows so as to hinder the diffusive transport, repre-
sented in the Smoluchowski formula eq (12). On the other hand,
the droplet spacing increases with lower frequency so that the
decreasing interference effect among the droplets facilitates the
gaseous transport. The apparent insensitivity consequently
emerges as the two factors change simultaneously with the
orifice frequency in fixed and quantitative relationships:d ∝
fo-1/3 anddc ∝ fo-1.

4. Concluding Remarks

As an experimental method to study the mass-accommodation
kinetics at liquid-vapor interfaces, the droplet-train/flow-reactor
technique has several unique virtues as described in section 1.
A significant problem, however, lies in the subsequent analysis
to decompose the phenomenological uptake rate into elemental
kinetic steps, as is common for the other experimental methods
of heterogeneous kinetics. We think that theoretical simulation
can significantly benefit the experimental analyses, particularly
when the decomposition is not straightforward based on
experimental information. In this paper, we have focused on
the kinetic step of gas-phase transport in the droplet-train/flow-
reactor apparatus because the analytical expression of the gas-
phase resistance in a droplet-train flow tube has not been
established.

It is known that the Fuchs-Sutugin formula well describes
the gas-phase resistance for uptake onto a droplet over a wide
range of Knudsen numbers. However, because the Fuchs-
Sutugin formula has been originally derived from a spherical
boundary condition, it is not straightforwardly applied to the
actual droplet-train experiments where a train of droplets moves
fast in a flow tube. The boundary conditions for the droplet-
train flow tube are far more complicated than the ideal condition
that a single spherical droplet is present in a quiescent gaseous
media and even more complicated than those of other techniques
using the Knudsen-cell reactor or the coated-wall flow tube.
Therefore, we have employed numerical calculations of the
coupled-diffusion equation and the fluid dynamics under bound-
ary conditions that mimic the droplet-train flow tube and thereby
directly evaluated the gaseous resistance in the flow tube.

The concentration distribution in the flow tube and the
deposition rate onto the droplets were discussed in comparison
with the above ideal model. The calculated concentration field
of the trace species shows a spherical distribution around each
droplet only in close proximity of each droplet, whereas the
overall concentration distribution assumes a cylindrically sym-

metric form with the trace species quite depleted near the flow-
tube axis in the wake of each droplet. This feature is attributed
to fluid dynamical coupling and interference among the droplets,
implying that the assumption of an isolated droplet is not
suitable. Consequently, the deposition rate in the flow tube is
substantially reduced from the above ideal model in the natural
breakup conditions. The deviation is determined by two factors,
that is, the flow effect and the interference among the droplets.
Although the flow (effect of the moving droplets) facilitates
the transport onto the droplets, the interference hinders the
diffusive transport. As a consequence, the phenomenological
uptake coefficient is well represented with the Fuchs-Sutugin
formula, provided that the droplet diameter and the mass-
accommodation coefficient included in the formula are replaced
with the optimized effective parameters.

The deposition rate with varying droplet velocity and orifice
frequency were examined, with conditions corresponding to the
actual experiments. The deposition rate shows a modest
dependence on the droplet velocity, and the dependence is well
represented by the Rantz-Marshall formula with a scaling factor
of ∼2.3-2.4. The nearly invariant scaling factor allows us to
define the pure interference effect on the deposition rate after
correcting the flow effect. We also found that the deposition
rate is surprisingly insensitive to varying orifice frequency. This
is a consequence of an interesting cancellation of effects due to
the diffusive resistance and the interference among the droplets.

The refined analysis of the gas-phase transport in the flow
tube should have significant implications for the droplet
experiments with relatively large mass-accommodation coef-
ficients and low Knudsen numbers, for example, water vapor
on liquid water. We hope the present analysis will improve the
quantitative accuracy and expand the applicability of the droplet-
train experiments.
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Appendix A. Effect of Droplet Deceleration

The present calculations have assumed a constant droplet
velocity, whereas the experimental measurements show that the
droplet velocity slows a little along the length of the droplet
train. Accordingly, the momentum transfer associated with the
droplet deceleration is not accounted for in this simulation. Shi
et al.12 reported that while the decrease in the speed of droplets
generated with a 70-µm orifice is only 5% along the axial length
of 21 cm, the decrease is 23% in the droplets generated with a
26-µm orifice. In the latter case, this decrease should be taken
into account to evaluate the gas-droplet interaction time along
the flow tube. Because the present simulation has adopted ado

) 60 µm orifice, it is not likely that the effect of droplet
deceleration is remarkable in the configurations employed in
the present calculations. However, when the fluid dynamics
calculations are applied to configurations with smaller orifices,
the deceleration effect should be taken into account. Therefore,
we propose a simple but reasonable way to incorporate this
effect in the calculations.

A simple way to treat the change in droplet speed is to
convolute the steady-state calculations with varying droplet
velocity, assuming a local steady state with a constant velocity
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at each region in the flow tube. To make this treatment
reasonable, the two conditions that follow are required. First,
the droplet speed can be considered to be locally constant in
the length scale of several droplet intervals. This condition is,
in fact, satisfied even in the case of the smaller orifice mentioned
above; the decrease is 23%/21 cm≈ 1.1%/cm. Second, the local
steady-state flow fields are well decoupled among the different
spatial regions in the flow tube with varying droplet speed. This
means that the perturbation induced by the momentum transfer
from the droplets to the gas is relaxed fast enough. This
condition is usually also satisfied, as shown in the following
discussion. The efficiency of the momentum relaxation within
the gas is characterized by the kinematic viscosityν, which is
calculated asν ) 1.61× 10-3 m2/s in the typical situation of
Figure 2 (T ) 0 °C, Ptotal ) 25 Torr, He buffer). The velocity
field in Figure 2a, on the other hand, indicates that the perturbed
region strongly coupled to the droplet train ranges radially from
the flow-tube axis toy ≈ 5.0× 10-4 m, where 1- 1/e≈ 0.63,
andVd ) 27 m/s of the axial velocity is recovered. Accordingly,
the momentum relaxation within the perturbed region takes place
in a time scale ofτmom ) y2/ν ≈ 1.6 × 10-4 s. During this
time, the droplets move byVdτmom ≈ 4.2× 10-3 m ) 4.2 mm,
which is sufficiently shorter than the length of the flow tube.

The above discussion has argued that the change in droplet
speed can be treated locally in the axial regions of the flow
tube. We have discussed the velocity dependence of the
deposition rate in section 3.4 and argued that the velocity
dependence is fairly modest. Therefore, in simulating the normal
conditions of the droplet-train experiments, the effect of the
droplet deceleration is expected to have minor influences on
the velocity field or deposition rate.

Appendix B. Uncertainties in the Model Calculations

To draw a quantitative comparison with the experiments, the
proper error range of the simulation has to be clarified. Here
we summarize and discuss possible uncertainties inherent in the
computed deposition rates, which stem from both numerical
problems in the calculations and missing factors in the modeling.
Possible sources of error include the (1) numerical problems
associated with the discrete mesh division, (2) calculated
diffusion coefficients of the gas species, (3) deviation from the
continuum treatment, (4) variation in the deposition rates with
respect to the droplet location, (5) droplet deceleration in the
flow tube, and (6) internal liquid motion of the droplets. We
discuss these factors in the following discussion.

(1) As discussed in section 2, the discrete mesh division
involves two sources of numerical error in calculating the flow-
concentration field and in extrapolating the concentration field
to the droplet surface. The numerical errors of the two sources
are estimated to be∼0.5 and 4%, respectively, in the calculated
deposition rates in section 2. The accuracy was evaluated by
comparing the numerical values with those obtained through
more accurate and intensive test calculations.

(2) The diffusion coefficients of the gas species virtually
provide no significant source of error, though the calculated
values of the diffusion coefficients may involve some inac-
curacy. The principal purpose of this simulation is to obtain
the resistance of the gas-phase transport as a function of
ingredient parameters, including pressure, droplet velocity,
orifice frequency, etc. The main results of this work in Figures
5-9 present relations between the inverse diffusion coefficient
1/Dg and the inverse deposition rate 1/R or uptake coefficient
1/γ because the gas-phase resistance is essentially controlled
by the diffusion coefficientDg. As evidenced in Figure 5, at a

fixed velocity and frequency, the calculated 1/R values under
different temperatures and buffer gases and thereby different
diffusion coefficients are well scaled in a certain relation on
the 1/Dg axis. The critical quantity to be compared with
experiment is not each calculated value of the deposition rate
but a calculated relation, such as that betweenDg andR. We
have examined the 1/Dg-1/R curve by deliberately using
different diffusion coefficients and confirmed that the relation
is actually robust, although each value of 1/R depends on the
1/Dg value employed.

(3) Because the present simulation is based on the continuum
treatment of the gas fluid, it is expected that the calculated
deposition rate may deviate from the exact value as the Knudsen
number becomes larger, where the kinetic molecular collision
needs to be explicitly considered. The deviation could be
expressed by the kinetic correction factor,fkin, which is given
as the ratio of the gaseous resistance based on the continuum
treatment to the exact one. In a simple case of the diffusive
transport onto a single droplet, where the accurate deposition
rate is provided by the Fuchs-Sutugin formula, the kinetic
correction factorfkin is given using eqs (6) and (7) as

The behavior offkin is displayed in Figure 10. Note thatkkin is
almost unity at lowKn, while kkin monotonically decreases with
increasingKn. This indicates that the continuum treatment
without the kinetic collision effect tends to underestimate the
gaseous resistance (or overestimate the deposition rate) at higher
Kn. We can assume that eq (16) well describes the kinetic
correction for the uptake in the droplet-train flow tube because
the effect of the kinetic collision is essentially local at the droplet
surface.

Among the data points in Figure 5, the effect of the kinetic
correction may be significant only in the data with small 1/Dg

values. The condition of the largest Knudsen number (T ) -13
°C, Ptotal ) 6.0 Torr, He buffer) has the diffusion coefficient
Dg ) 2.88× 10-3 m2/s, as shown in Table 1. This corresponds
to Kn ) 6Dg/cjd ) 0.37, usingcj ) 414 m/s and the real droplet
diameterd ) 113µm. In this extreme case, eq (16) and Figure
10 yield fkin ) 0.91, indicating that the continuum treatment
may underestimate the gaseous resistance by 9%. In the data
points at T ) 0 °C in Figure 6, from which the mass-
accommodation coefficient is discussed in section 3.3, allKn
e 0.21, orfkin g 0.96, which means that the error due to the
kinetic correction is within 4%.

(4) Figure 4 shows that the deposition rate varies with the
droplet location, which may cause an uncertainty in the
deposition rate. As we discussed in section 3.2, the present
values are considered to be an upper limit of the deposition
rate. Evaluating the range of error is difficult from the

Figure 10. The kinetic correction factorfkin, given by eq (16) as a
function of the Knudsen number.

fkin ) 0.75/Kn - 0.5
(0.75+ 0.283Kn)[Kn(1 + Kn)]

(16)
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calculations in this work, but we could estimate it to be within
7-10% from the variation in Figure 4a. (Note that the decrease
in the bulk concentration is much smaller within this segment
of the flow tube.) This issue will be further discussed in our
forthcoming paper.59

(5) The effect of the droplet deceleration is discussed in detail
in appendix A, where we have argued that this effect can be
treated locally in the flow tube. In the conditions of the present
simulation, the extent of the droplet deceleration itself is
expected to be very small, as discussed in appendix A, and
therefore this effect is safely considered to be minor in this work.

(6) The internal liquid circulation induced by the droplet
movement can reduce the solubility resistance in the liquid phase
and thereby accelerate the overall uptake rate. Although this
issue is outside the scope of this paper, it might play a role
when comparing the present calculations with experimental
results. While this issue has been studied for falling rain droplets
in the atmosphere,2,60 it is not likely that the internal liquid
circulation in the low-pressure flow tube is as extensive as that
in the atmosphere. As a rough estimation, Baboolal et al.60

argued that the internal circulation within a single droplet
immersed in a gas flow affects the uptake efficiency by 10% in
a millisecond order of interaction time atRe ) 4, a typical
Reynolds number for the droplets in the flow tube. However,
we can argue that the internal circulation in the droplet train is
most likely much less significant than that in a single droplet
because the steady movement of the droplet train is much less
perturbed by shear friction from the gas, as mentioned in section
3.1.

To summarize the above estimates, we conclude that the
calculated deposition rates have an error range≈ -15% to
+10%, with a larger error in the negative direction mainly due
to factors 3 and 4. This error range is nearly comparable to the
experimental uncertainty.
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